A) uneq B) atom C) the tr	onding is due to ual charge distribut s bonding to hydrog ansfer of electrons h naring of electrons h	between atoms.	olecules.	
B) the tr C) uneq	s bonding to hydrog ansfer of electrons l	between atoms. ions around neutral m	olecules.	
A) the sh B) the tr C) atoms	als bonding is due t haring of electrons b ansfer of electrons l s bonding to hydrog hal charge distribut	between atoms. between atoms.	olecules.	
4) In general, A) ionic		ing is usually the stron B) van der ^v	gest bond? Waals bond	C) hydrogen bond
A) ionic		ing is usually the weak	B) covaler	nt bond r Waals bond
A) decre	nic quantum mecha ases as <i>L</i> increases. Istant for all <i>L</i> .	anical rotator, the energ	B) increas	een adjacent energy levels es as <i>L</i> increases. randomly as <i>L</i> increases.
quantum st A) 2E.	quantum mechanic ate will have energy		B) 6 <i>E</i> .	energy <i>E</i> . The same rotator in the $L = 2$
C) 3E.8) In its lowes:A) <i>hf</i>/2.	t quantum state, the	e energy of a diatomic l B) <i>hf</i> .		f the given answers. or having frequency f is D) $hf/4$.
9) For a diator A) is cor	nic quantum mecha Istant for all values ases as the integer a	anical vibrator, the ener of the integer <i>v</i> .	rgy difference betv B) varies 1	veen adjacent quantum states randomly as the integer v increases. es as the integer v increases.
\hbar^2	t quantum state, a d	liatomic quantum mec	hanical rotator has	s a rotational energy of
A) $\overline{2I}$ $\frac{\hbar^2}{I}$			B) zero.	
C) [.			D) none of	f the given answers.

11) If a diatomic quantum mechanical vibrator in its ground state has energy <i>E</i> , what is its energy	y in its second
state above the ground state?	

- A) 9E. B) 3E. C) E. D) 7E. E) 5E.
- 12) Metallic bonding is due to
 - A) the transfer of electrons between atoms.
 - B) the sharing of electrons by all atoms.
 - C) unequal charge distributions around neutral molecules.
 - D) atoms bonding to hydrogen molecules.
- 13) In a good conductor, the highest energy band containing electrons isA) only partially filled.B) completely empty.C) completely filled.
- 14) In a good insulator, the highest energy band containing electrons, called the valence band, isA) completely filled.B) only partially filled.C) completely empty.
- 15) A diatomic quantum mechanical oscillator has a moment of inertia of 7.73×10^{-45} kg \cdot m². What is the rotational energy when it is in the quantum state characterized by L = 2? (1 eV = 1.60×10^{-19} J, $h = 6.626 \times 10^{-34}$ J \cdot s)
- 16) A diatomic molecule has 2.6×10^{-5} eV of rotational energy in the L = 2 quantum state. What is its rotational energy in the L = 1 quantum state? (1 eV = 1.60×10^{-19} J, $h = 6.626 \times 10^{-34}$ J · s)
- 17) A diatomic molecule has 18×10^{-5} eV of rotational energy in the L = 2 quantum state. What is its rotational energy in the L = 0 quantum state? (1 eV = 1.60×10^{-19} J, $h = 6.626 \times 10^{-34}$ J · s)
- 18) Estimate the maximum rotational energy (in electron-volts) for a free and freely-spinning diatomic hydrogen molecule in the L = 2 quantum state. The equilibrium separation for the atoms in the H₂ molecule is 0.075 nm. (1 eV = 1.60 × 10⁻¹⁹ J, $m_{\text{proton}} = 1.67 \times 10^{-27}$ kg, $h = 6.626 \times 10^{-34}$ J · s)
- 19) A diatomic molecule is vibrating in the v = 1 quantum state with a frequency of 2.0 × 10¹³ Hz. What is its vibrational energy? (1 eV = 1.60 × 10⁻¹⁹ J, $h = 6.626 \times 10^{-34}$ J · s)
- 20) The energy gap between the valence and conduction bands in a certain semiconductor is 1.25 eV. What is the threshold wavelength for optical absorption in this substance? ($c = 3.00 \times 10^8 \text{ m/s}$, $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$)

Answer Key Testname: CH29_QUANTUM_MOLECULES

1) D 2) B 3) D 4) A 5) D 6) B 7) C 8) A 9) A 10) B 11) E 12) B 13) A 14) A 15) 2.70 $\times 10^{-5} \, {\rm eV}$ 16) 8.7 × 10⁻⁶ eV 17) 0 eV 18) 0.044 eV 19) 0.12 eV 20) 994 nm